Asynchroniczne zebatki02

Silnik asynchroniczny (indukcyjny) to najbardziej popularny silnik, o najszerszych zastosowaniach ze wszystkich rodzaji silników elektrycznych, wykorzystywany szczególnie w przemyśle, ale również i w sprzęcie domowym. Charakteryzuje się bardzo prostą, i łatwą w utrzymaniu konstrukcją. Moce budowanych obecnie silników asynchronicznych obejmują zakres od ułamków kilowatów do kilku megawatów.

Budowa

silnik indukcyjny

silnik indukcyjny  - przekrój

Silnik indukcyjny składa się z dwóch zasadniczych części: nieruchomego stojana i ruchomego(wirującego) wirnika.

silnik indukcyjny - przekrój

Na wewnętrznej stronie rdzenia stojana i zewnętrznej stronie rdzenia wirnika wykonuje się specjalne rowki, zwane żłobkami, w których umieszczane są uzwojenia. Część rdzenia pomiędzy sąsiednimi rowkami, nazywana jest zębem. Żłobki i zęby mogą posiadać różne kształty, zwykle ich liczba w stojanie i wirniku jest różna. Pomiędzy stojanem a wirnikiem znajduje się możliwie mała szczelina powietrzna.

stojan, uzwojenie

Uzwojenie stojana wykonane jest z izolowanego drutu, zaimpregnowane i mocno usztywnione, tak, aby zmniejszyć prawdopodobieństwo uszkodzenia na skutek drgań mechanicznych

Ze względu na sposób wykonania wirnika rozróżnia się dwa rodzaje silników indukcyjnych: klatkowe i pierścieniowe.

W silniku pierścieniowym uzwojenie wirnika wykonane jest podobnie do uzwojenia stojana. Jest ono na stałe połączone z pierścieniami ślizgowymi (stąd nazwa “silnik pierścieniowy”), zwykle trzema, gdyż uzwojenie wirnika najczęściej jest 3-fazowe. Za pośrednictwem przylegających do pierścieni szczotek, uzwojenia wirnika połączone są z dodatkowymi elementami, zwiększającymi rezystancje każdej fazy. (zmianę rezystancji faz stosuje się dla rozruchu, hamowania i zmiany prędkości silnika). Obecnie ze względu na zbyt skomplikowana budowę konstrukcja ta jest raczej rzadko stosowana.

wirnik - pierścieniowy

wirnik silnika pierścieniowego

W silniku indukcyjnym klatkowym obwód elektryczny wirnika jest wykonany z nieizolowanych prętów, połączonych po obu stronach wirnika pierścieniami zwierającymi. Konstrukcja to wyglądem przypomina klatkę o kształcie walca (stąd wzięła się nazwa tego silnika).

Obwód magnetyczny wirnika wykonany jest w postaci pakietu blach stalowych z dodatkiem krzemu, wzajemne odizolowanych, złożonych jedna na drugą.

Obwód elektryczny wirnika jest zawsze zwarty (inna nazwa tego silnika to silnik indukcyjny zwarty) w związku, z czym nie ma możliwości przyłączania dodatkowych elementów, tak jak ma to miejsce w wirniku silnika pierścieniowego. Klatka stanowi wielofazowe uzwojenie wirnika, a za liczbę faz przyjmuje się liczbę prętów, z których jest wykonana.

klatka

klatka silnika klatkowego

wirnik - klatkowy

wirnik silnika klatkowego

Silnik klatkowy ma bardzo prostą, tanią, i łatwa w utrzymaniu konstrukcję. Wykonanie silnika pierścieniowego jest o wiele droższe, ale konstrukcja ta, poprzez możliwość dołączania dodatkowych elementów do uzwojenia wirnika posiada zdecydowanie bogatsze właściwości ruchowe.(układy umożliwiające rozruch i regulacje prędkości silnika) Biorąc jednak pod uwagę coraz większą powszechność elektronicznych urządzeń zasilających (falowniki, softstarty), umożliwiających uzyskanie o wiele lepszych właściwości regulacyjnych, wspomniane zalety silników pierścieniowych przestały być juz tak istotne i w ogromnej większości silniki pierścieniowe zostały wyparte przez silniki klatkowe.

Zasada działania

Wytworzone przez uzwojenia stojana wirujące pole magnetyczne obraca się wokół nieruchomego wirnika. W wyniku przecinania przez to pole prętów klatki wirnika, indukuje się w nich napięcie (stąd nazwa ”silnik indukcyjny”) i zaczyna płynąć w nich prąd.(patrz zjawisko indukcji elektromagnetycznej). Przepływ prądu w polu magnetycznym powoduje powstanie siły elektrodynamicznej (patrz zjawisko powstawania siły elektrodynamicznej) działającej stycznie do obwodu wirnika, a zatem powstaje także moment elektromagnetyczny. Jeżeli wartość tego momentu jest większa od wartości momentu obciążenia, to wirnik rusza i zaczyna zwiększać swoja prędkość obrotową. Zwiększanie prędkości wirnika, powoduje że pręty jego klatki przecinane są przez pole magnetyczne z coraz mniejszą prędkością, co skutkuje zmniejszeniem wartości indukowanej siły elektromotorycznej i spadkiem wartość prądu płynącego w prętach klatki, a zatem spada również wartość momentu elektromagnetycznego. Jeżeli moment ten spadnie do wartości równej momentowi obciążenia, wirnik przestanie przyspieszać i dalej będzie poruszał się ze stałą prędkością. Gdyby nie było żadnego momentu oporowego, wirnik osiągnąłby prędkość równą wartości prędkości wirowania pola, a więc prędkości synchronicznej. W takim przypadku pole wirnika byłoby nieruchome względem pola stojana, a więc ustałoby przecinanie prętów klatki przez pole stojana i nie płynęłyby w nich prądy, nie powstałby moment elektromagnetyczny. Sytuacja taka nie jest jednak możliwa do wystąpienia w rzeczywistym silniku, ponieważ zawsze występuje jakiś moment obciążenia, chociażby moment tarcia w łożyskach czy oporów powietrza (chyba że wirnik będzie napędzany mechanicznie przez jakiś inny silnik). Zatem wirnik osiągnie taką prędkość (zwykle niewiele mniejsza od prędkości synchronicznej), przy której momenty elektromagnetyczny silnika i obciążenia będą miały tą samą wartość. Skoro nie jest to prędkość synchroniczna, musi to być prędkość asynchroniczna, której silnik indukcyjny zawdzięcza swoja druga nazwę - “silnika asynchronicznego”.

Sterowanie apletem

Poślizg silnika przy znamionowym obciążeniu zwykle waha się w granicach 1,0 do 10% i jest tym mniejszy, im większa jest znamionowa moc silnika. Gdy wirnik jest nieruchomy, poślizg jest równy 1(100%). Na biegu jałowym silnika (występuje tylko moment tarcia w łożyskach i moment oporów powietrza) poślizg jest bardzo mały i wynosi 0,5 – 1%.

W tym modelu wirujące pole magnetyczne reprezentowane jest przez obracające się magnesy umieszczone w obudowie stojana, natomiast wirnik stanowi klatka z prętów zwarta pierścieniami z obu stron. Wirnik obraca się z mniejszą prędkością niż stojan. Wartość tej prędkości jest uzależniona od momentu obciążenia - przy większym momencie oporowym wirnik obraca się wolniej, przyspiesza, jeżeli go zmniejszamy. A więc w skoro prędkości wirnika i stojana są różne, oznacza to, że w tym modelu stojan, a w rzeczywistości pole wirujące wytwarzane przez stojan, obraca się z pewną prędkością względem wirnika. Prędkość tą nazywa się poślizgiem i wyraża się wzorem:

aplet1

lub w %

poslizg
poslizg

n1- prędkość wirowania pola wytworzonego przez stojan

n - prędkość wirowania wirnika

Moment elektromagnetyczny i charakterystyka mechaniczna

Często w praktycznych zastosowaniach silnika istnieje potrzeba szybkiego wyznaczenia wartości momentu elektromagnetycznego, jaki jest on w stanie osiągnąć. Tabliczka znamionowa silnika zwykle nie podaje jego wartości, ale podaje za to inne wartości na podstawie, których bardzo łatwo go wyliczyć. W najprostszej postaci wzoru na moment obrotowy jest to iloczyn siły i ramienia, na jakim działa ta siła.

Powstająca na obwodzie wirnika siła elektrodynamiczna F, obracając się razem z wirnikiem wykonuje pracę W, dostarczając w tym czasie moc P

Zatem generowany w tycz warunkach moment elektromagnetyczny M :

moment obrotowy

Wartości mocy znamionowej silnika P i prędkości asynchronicznej n podawane są zawsze na tabliczkach znamionowych silników, zatem mając te wartości można łatwo wyliczyć wartość znamionowego momentu silnika.

Charakterystyka mechaniczna

Charakterystyka mechaniczna silnika indukcyjnego ukazuje zależność momentu na jego wale od prędkości obrotowej silnika Jak juz wspomniano wcześniej prędkość obrotową silnika asynchronicznego można wyrazić za pomocą poślizgu.

charakterystyka mechaniczna

Charakterystykę mechaniczną silnika można wyrazić za pomocą nastepującego wzoru:

wzor Klossa

M  - moment silnika
Mm - moment krytyczny silnika
s - poślizg
sm - poślizg krytyczny

Wzór ten nazywany jest wzorem Klossa.:

Rozruch

Rozruch bezpośredni

Rozruch silnika jest możliwy, jeżeli powstający w chwili rozruchu moment elektromagnetyczny jest większy niż moment obciążenia. Najprostszym sposobem dokonania rozruchu silnika indukcyjnego jest podłączenie uzwojeń stojana do 3-fazowego źródła zasilania (w przypadku silnika 3-fazowego), jest to tzw. rozruch bezpośredni. W tym przypadku pobierany prąd rozruchu jest wielokrotnie większy niż prąd znamionowy (do 8 razy), co powoduje nagrzewanie się uzwojeń a także może spowodować spadki napięcia sieci zasilającej. Wartość powstającego momentu elektromagnetycznego nie jest zbyt duża, dlatego, aby silnik mógł wystartować nie może być zbytnio obciążony. Ze względu na te ograniczenia rozruch bezpośredni stosuje się dla silników o małych mocach (do kilkunastu kW).

Rozruch gwiazda-trójkąt

Sposobem na zmniejszenie prądu rozruchowego, jest zastosowanie w celach rozruchowych przełącznika gwiazda - trójkąt.

listwa zaciskowa

uzwojenia połaczone w gwiazdę

uzwojenia połaczone w trójkąt

Rozruch ten jest jednak możliwy tylko dla silników 3-fazowych, które mają wyprowadzone 6 zacisków na tabliczce zaciskowej, umożliwiajace odpowiednie podłaczenie uzwojeń stojana w gwiazdę lub w trójkąt

tabliczka znamionowa zawierająca 6 zacisków

Połączenie w gwiazdę polega na połaczeniu końców wszystkich trzech uzwojeń do jednego wspólnego punktu, a pozostałych trzech końców do kolejnych faz sieci zasilającej. W ten sposób każde z uzwojeń stojana podłączone jest jednym końcem do przewodu neutralnego N, a drugim do przewodu fazowego (L1, L2 lub L3). Na każdym z tych uzwojeń występuje zatem napięcie fazowe (czyli w naszych warunkach wynosi ono 230V). Zwykle nie stosuje się połączenie punktu wspólnego wszystkich uzwojeń z punktem neutralnym N ponieważ nie jest ono konieczne.

trójkąt

uzwojenia stojana połączone w trójkąt

gwiazda

uzwojenia stojana połączone w gwiazdę

Połączenie w trójkąt polega na połączeniu końca  uzwojenia danej fazy z początkami uzwojenia fazy następnej (punkt U2 łączony z V1, V2 z W1 a  W2 z U1). Połączone w ten sposób uzwojenia tworzą zamknięty obwód, a jego wygląd przypomina trójkąt. Punkty wspólne uzwojeń łączone są następnie do kolejnych faz sieci zasilającej. W tym połączeniu wcale nie wykorzystuje się punktu neutralnego. Przy połączeniu w trójkąt na każdym z uzwojeń panuje napięcie międzyfazowe (które w naszych warunkach wynosi 400V).

Przy połączeniu uzwojeń silnika w trójkąt, prąd pobierany przez silnik z sieci jest 3-krotnie większy niż prąd pobierany przy połączeniu w gwiazdę. Także moment elektromagnetyczny a więc i moc silnika w tym przypadku  są 3-krotnie większe. Stosując przełącznik gwiazda – trójkąt możemy wystartować silnik połączony w gwiazdę, przez co będzie mniejszy pobór prądu z sieci zasilającej, a następnie po osiągnięciu przez silnik odpowiedniej prędkości obrotowej przełączyć uzwojenia stojana w trójkąt, tak, aby silnik mógł zapewnić pożądaną przez nas moc. W starszych rozwiązaniach przełączenie zwykle dokonywane było ręcznie przez operator, obecnie stosuje się specjalizowane do tego celu układy styczników i przekaźników dokonujące automatycznego przełączenia po nastawionym wcześniej czasie.

Rozruch przez zmianę rezystancji w obwodzie wirnika

Jak juz wspomniano wcześniej, w przypadku silnika pierścieniowego w celach rozruchowych można stosować dodatkowe rezystory przyłączane do uzwojeń wirnika co  powoduje spadek prądu wirnika, a zatem również spadek prądu pobieranego z sieci. Wadą tego rozwiązania, podobnie jak w przypadku rozruchu gwiazda - trójkąt jest mniejszy moment rozruchowy silnika, poza tym jak juz wspomniano wcześniej, ze względu na skomplikowana budowę i koszty utrzymania konstrukcja ta jest obecnie rzadko stosowana.

Zastosowanie “softstartu”

Ostatnio coraz częściej, do łagodnego rozruchu 3-fazowych silników indukcyjnych stosuje się specjalizowane urządzenia, nazywane układami „soft - start” (miękkiego rozruchu), które mają za zadanie redukuję niekorzystnych zjawisk występujących podczas rozruchu,  wpływających na żywotność silników i jakość ich pracy. Ich zasada działania opiera się na, płynnej regulacji napięcia podawanego na uzwojenia (lub jedno z uzwojeń) W roli elementów sterujących stosuje się najczęściej tyrystory. Zwykle urządzenia takie umozliwiaja kontrole i możliwość nastawienia wielu parametrów takich jak czas rozruchu, wartość początkowego momentu rozruchowego,  kolejności faz i czy temperaturę przegrzania.

softstart

schemat podłączenia silnika do sieci 3- fazowej za posrednictwem softstartu.

Zmiana prędkości obrotowej silnika

Jak juz wspomniano i pokazano wcześniej w silniku indukcyjnym prędkość obrotowa wyraźnie zależy od obciążenia. A więc czy możliwa jest regulacja prędkości przez zmianę obciążenia? Teoretycznie tak, ale chyba nie o to chodzi.

Chodzi raczej o to, aby istniała możliwość zmiany wartości prędkości obrotowej silnika przy ustalonych już warunkach zasilania i obciążenia. Po przekształceniu przytoczonego wcześniej wzoru na poślizg otrzymujemy wzór na prędkość obrotową silnika indukcyjnego, na podstawie, którego możemy stwierdzić, że będzie ona zależała od:

f - częstotliwości zasilania
p - liczby par biegunów
s - poślizgu

prędkość asynchroniczna

prędkość obrotowa silnika indukcyjnego

Zmiana liczby par biegunów

W tym przypadku zmianę prędkości obrotowej silnika osiąga się przez zmianę liczby par biegunów w stojanie. Realizuje się to zwykle umieszczając w stojanie kilka niezależnych uzwojeń o różnych liczbach par biegunów (z reguły nie więcej niż dwa) lub jedno uzwojenie o przełączalnej liczbie par biegunów Przełączając zasilanie pomiędzy uzwojeniami, otrzyma się pola wirujące z różnymi prędkościami.

W tym przypadku możliwa jest tylko i wyłącznie skokowa regulacja prędkości obrotowej, Silniki takie nazywane są silnikami wielobiegowymi, i wykonuje się je wyłącznie jako silniki klatkowe(dla silników pierścieniowych trzeba by również każdorazowo zmieniać liczbę biegunów wirnika). Silniki te znajdują zastosowanie w wszelkiego rodzaju obrabiarkach, zastępując, jeżeli to możliwe, przekładnie mechaniczne

p

1

2

3

4

6

8

10

n1

3000

1500

1000

750

500

375

300

n

2880

1440

960

720

480

360

288

Tabela wartości prędkości synchronicznych (n) i typowych prędkości asynchronicznych (n1)  dla liczby par biegunów stojana (p) (jak łatwo policzyć dla poślizgu s=0.04).

Zmiana rezystancji w obwodzie wirnika

Dla silników pierścieniowych podobnie jak dla celów rozruchowych, podłącza się dodatkowe rezystancji w obwód wirnika, Połączone szeregowo z uzwojeniem wirnika rezystancje spowodują spadek prądu płynącego w wirniku, a więc i spadek powstającej siły elektrodynamicznej działającej na wirnik a co za tym idzie spadek momentu i w końcu spadek prędkości obrotowej silnika.

Zmiana częstotliwości zasilania

Częstotliwość zasilania wpływa na prędkość wirowania pola magnetycznego wytwarzanego w stojanie, czyli na prędkość synchroniczną silnika. Zmieniając jej wartość możemy płynnie zmieniać prędkość silnika w zakresie od postoju do prędkości nawet przekraczającej prędkość znamionową.(przekraczając prędkość znamionową trzeba wziąć pod uwagę wytrzymałość mechaniczną silnika i wytrzymałość elektryczną izolacji).

Char. mechaniczna przy U/f const

Charakterystyki mechaniczne przyzachowaniu U/f = const.

Obecnie ze względu na bardzo dynamiczny rozwój elektroniki, energoelektroniki, i znaczny spadek cen urządzeń mikroprocesorowych, silniki indukcyjne zasila się z urządzeń zwanych falownikami. Urządzenia te w najprostszych rozwiązaniach bazują właśnie na zasadzie zachowywania stałej wartości stosunku U/f, a oprócz regulacji prędkości obrotowej, pozwalają na kontrolę wielu parametrów silnika, co zdecydowanie poprawia jakość funkcjonowania takiego silnika i wydłuża czas jego eksploatacji.

Jeżeli zmiana częstotliwości odbywa się przy stałej wartości napięcia zasilania, powoduje to niepożądaną zmianę wartości strumienia (wzrost częstotliwości powoduje spadek wartości strumienia), co niekorzystnie wpływa na generowany przez silnik moment obrotowy. Dlatego jeżeli wymagana jest stała wartość momentu na wale, zmianom częstotliwości powinny odpowiadać proporcjonalne zmiany napięcia zasilającego (stosunek U/f=const).

falownik i silnik

falownik i silnik

Silnik indukcyjny w akcji

Przykładowy aplet prezentuje działający model silnika asynchronicznego klatkowego. Włączanie i wyłączanie odpowiednich pól wyboru pozwala na uwidocznienie lub schowanie poszczególnych elementów konstrukcji silnika, a także wektorów indukcji magnetycznych wytwarzanych przez poszczególne uzwojenia stojana i wypadkowego wektora wirującego(jeżeli wszystkie pola są zaznaczone, to przejrzystość animacji nie jest najlepsza). Szczególnie pouczające wydaje się zaobserwowanie asynchronizmu silnika, przejawiającego się tym, że wypadkowy wektor wirujący obraca się z większą prędkością niż klatka wirnika, w związku, z czym przecina on kolejne pręty na obwodzie klatki dzięki czemu może indukować się siła elektromotoryczna i płynąć w prętach prąd. 

Sterowanie apletem

aplet03
[HOME] [Info] [Podstawy] [Adresy] [Silniki - Wstęp] [Silnik DC] [AC - Wprowadzenie]

urb@n © 2006